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field generated by Siegel modular forms

By D. Bertrand at Paris andW. Zudilin at Moscow

§1. Statement of the results

It is a classical fact that the elliptic modular function l ¼ ðQ10=Q00Þ4 satisfies an
algebraic di¤erential equation of order 3 (this goes back to Jacobi’s Fundamenta nova), and
none of lower order (cf. [Ra], [M]). In this paper, we show how these properties generalize
to Siegel modular functions of arbitrary degree.

Some notations are necessary before we can state our main results. Let g be a positive
integer (called indi¤erently degree, or genus), let k be an algebraically closed subfield of C,
and set:

Hg ¼ Siegel half space of degree g; the Q-vector group Zg formed by symmetric
matrices of order g has dimension

n :¼ gðgþ 1Þ
2

;

and Hg is open in ZgðCÞ.

t ¼ ðtjlÞ a generic point on Hg, so that kð2pitÞ can be viewed as the field of rational
functions on Zg=k.

G ¼ a congruence subgroup of Sp2gðZÞ (equivalently, a subgroup of finite index if
g > 1). We recall that the symplectic group Sp2g has dimension dimSp2g ¼ 2g2 þ g.

RwðG; kÞ ¼ k-vector-space of k-rational modular forms of weight w (a non-negative
integer) relative to G, i.e. holomorphic functions f on Hg which satisfy

f ðgtÞ ¼ detðctþ dÞwf ðtÞ for all

 
g ¼ a b

c d

� �
; t

!
A G� Hg;



and (if g ¼ 1) which are holomorphic at the cusps of G; such f ’s admit a Fourier expansion

f ðtÞ ¼
P

n ATþ
an exp

�
2piTrðntÞ

�
;

where Tþ is the set of non-negative elements of a suitable lattice in Zg, and we require that
the coe‰cients an all belong to k.

R :¼ RðG; kÞ ¼ the graded ring
L
wf0

RwðG; kÞ; in the fraction field of R, quotients of

modular forms of weights w1;w2 are called meromorphic modular forms of weight w1 � w2
(or simply, modular functions if w1 ¼ w2).

K :¼ KðG; kÞ ¼ the field of modular functions; for g > 1, the field Knk C identifies
with the field of meromorphic functions on Hg which are invariant under the action of G
(cf. [S], §25.4). In fact, ProjðRÞ is a projective variety over k, whose field of k-rational func-
tions identifies with K. In particular,

tr degðK=kÞ ¼ gðgþ 1Þ
2

¼ n; tr degðR=kÞ ¼ nþ 1;

and we may write K ¼ kðlÞ, where l :¼ fl1; . . . ; lNg is a set of modular functions relative
to G, whose first n elements l ¼ fl1; . . . ; lng are algebraically independent1); in particular,

q=ql :¼ fq=ql1; . . . ; q=qlng is a K-basis of the space DerðK=kÞ of k-derivations of the
extension K=k.

d ¼ fdjl ; 1e je l e gg where

djl ¼
1

2pi

q

qtjl
; 1e j < l e g; while djj ¼

1

pi

q

qtjj
; 1e je g:

We sometimes reindex this set of partial derivations as d ¼ fd1; . . . ; dng, and abbreviate it
by q=piqt; they form a kð2pitÞ-basis of Der

�
kð2pitÞ=k

�
.

M :¼ MðG; kÞ ¼ khl1; . . . ; lNi ¼ the d-di¤erential field generated by K, i.e. the field
generated over k by the partial derivatives of all orders in the djl , 1e je l e g, of all the
elements of K, or equivalently, the field generated over K by the d-derivatives of all orders
of l (recall that in characteristic 0, the derivatives of an element x algebraic over a di¤er-
ential field K lie in KðxÞ).

With these notations in mind, we can state:

Theorem 1. The d-di¤erential field M ¼ khli generated by the field of modular

functions K ¼ kðlÞ is a finite extension of the field generated over K by the d-partial deriv-
atives of l1; . . . ; ln of ordere2, and has transcendence degree

tr degðM=kÞ ¼ dimSp2g ¼ 2g2 þ g

1) As a rule, we reserve boldface Greek letters to n-tuples (of numbers, functions or derivatives).
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over k. Furthermore, M and CðtÞ are linearly disjoint over k, hence

tr deg
�
Mð2pitÞ=k

�
¼ dimðSp2g � ZgÞ ¼

1

2
gð5gþ 3Þ

(and p is transcendental over Mð2pitÞ if k ¼ Qalg), while all modular forms in R are alge-

braic over M.

The statement concerning M and CðtÞ is clear, since M embeds in the fraction
field of the ring of convergent Puiseux series in expð2pitjlÞ, 1e je l e g, with coe‰cients
in k, which is linearly disjoint from CðtÞ over k. Thus, the second formula is an immediate
corollary of the first one. Now, both are easily seen to be equivalent, and our strategy will
consist in proving the second formula, i.e. in studying the q=piqt-di¤erential extension
Mð2pitÞ of k.

Since an algebraic extension of a di¤erential field of characteristic 0 is automatically
a di¤erential extension, we may assume, in order to prove Theorem 1, that G is contained
in a principal congruence subgroup of level at least 3, so that GnHg is a complex manifold,
whose natural image in Proj

�
RðG; kÞ

�
is the set of complex points of a smooth quasi-

projective variety SðGÞ=k (cf. [MF], p. 190, and [P], §2). For instance, we may take for G
the theta-group of level ð4; 8Þ

G4;8 ¼ g ¼ a b

c d

� �
A Sp2gðZÞ; g1 1g ðmod4Þ; diagðatbÞ1 diagðctdÞ1 0 ðmod8Þ

	 

:

By a well-known result of Igusa ([I], pp. 178, 190 and 224), the corresponding ring
RðG4;8; kÞ is the integral closure of the ring k½QaQb; a A ðZ=2ZÞ2g; b A ðZ=2ZÞ2g�, where

QaðtÞ ¼ Qða 0;a 00ÞðtÞ ¼
P

n AZg

exp

 
pi

 
t

nþ 1
2
a 0

� �
t nþ 1

2
a 0

� �
þ

t

nþ 1
2
a 0

� �
a 00

!!

denotes the ‘thetanull’ modular form attached to the 2-characteristic a¼ ða 0; a 00Þ A ðZ=2ZÞ2g.
In particular, we may here take l¼fQa=Q0; a A ðZ=2ZÞ2gg as a set of generators ofKðG4;8; kÞ.
In this case, Theorem 1 can be given a more precise form, as follows.

Theorem 2. The d-derivatives of order e2 of the modular functions

fQa=Q0; a A ðZ=2ZÞ2gg generate over k a d-stable field MðG4;8; kÞ of transcendence degree

2g2 þ g over k, over which Q0 is algebraic.

In fact, the thetanulls themselves satisfy a system of partial di¤erential equations
of the second (rather than third) order, which has been explicited in [Z], Theorem 1, and is
discussed, amongst other di¤erential properties, in §5 of the paper. As shown by Ohyama
[O], these di¤erential equations take a simpler form in the case g ¼ 2. In §6, we derive from
these results and from Theorem 2 ten explicit functions making up a transcendence basis
for the corresponding fieldM, as well as an algebraic presentation of the d-stable ring gen-
erated over Q by the ten non-zero degree 2 thetanulls Qa, and their thirty first order partial
logarithmic derivatives ca; l ¼ dlQa=Qa. See Theorem 3 of §6 for a precise statement.
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The following diagram and ‘legend’ illustrate the proof of Theorem 1. The notation P
is defined in §3, Lemma 2, and � means equality for the algebraic closures �alg. We show
that ~MM alg ¼ M alg in §4. But as hinted above, the crux of the proof consists in translating
the problem in terms of a ‘field of periods’ F :¼ ~MMð2pit; 2piÞ and its compositum F with C,
hence in terms of linear di¤erential equations, as described in §2. The fact that the (alge-
braic) di¤erential equations satisfied by classical modular forms are governed by the (lin-
ear) Gauss-Manin connection was made crystal clear in [Ka], Appendix 1, and we are here
merely extending this view-point to forms of higher degrees.

F ¼ C
�
l;PðlÞ

�
¼�

n
kð2piÞ

C

� F :¼ ~MMð2pi; 2pitÞ ��
n
k

kð2piÞ

� Mð2pitÞx??? Zg

~MM :¼ kðl;P; dPÞ � M ¼ khli

kð2pitÞ
x???

x???
kðPÞ K ¼ kðlÞx???
k

����
�����

!

����
����

�! �����
!

�����
�����

���!

��������
��������!

Galq=qlðF=Knk CÞ ¼ Sp2g ) tr degðM=KÞ ¼ codimSp2gðZgÞ

) tr degðM=kÞ ¼ dimSp2g

Further comments on the proof of Theorem 1, and on its possible generalizations
and applications, are given in Remarks 3 and 4 at the end of §4. See also §3, Remark 2 for
a direct relation between periods and derivatives of modular forms via modular tensors.

§2. Picard-Fuchs and Picard-Vessiot theories

We first recall some well-known facts (see [D2], §2) about algebraic families of abelian
varieties. Let S=k be a smooth algebraic variety over kHC, with generic point s and field
of rational functions L ¼ kðSÞ ¼ kðsÞ, and let f : A ! S be a principally polarized abelian
scheme over S of relative dimension g, with generic fiber As :¼ A ¼ an abelian variety over
L. We write f an for the analytic map deduced from f after extension of scalars to C. Let
H :¼ H 1dRðA=LÞ be the 2g-dimensional L-vector space formed by the cohomology classes
of L-rational di¤erential forms of the second kind on A=L. The Gauss-Manin connection
attached to f equips H with an integrable connection ‘: H ! HnW1L=k. Choose a base
point s0 A S an, and let L0 be the field of meromorphic functions over a small neighbour-
hood Uðs0Þ of s0. The restriction to Uðs0Þ of the local system formed by the relative Betti
cohomology R1f an� Q generates over C the full space of horizontal vectors of the exten-
sion of ‘ to HnL0, and provides a representation r of the fundamental group p1ðS an; s0Þ
on the 2g-dimensional Q-vector space HB ¼ H 1BðAans0 ;QÞ, which preserves the 2piQ-valued
symplectic form cB induced on HB by the principal polarisation on As0 . The Gauss-Manin
connection admits an extension with logarithmic singularities over a suitable compactifi-
cation of S, so that ‘ is fuchsian and the Zariski closure of rðp1Þ in AutcBðHBnCÞ is iso-
morphic to the di¤erential Galois group Galð‘Þ of the connection ‘.
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Now, choose a basis o1; . . . ;og, h1; . . . ; hg of H over L, and a basis c1; . . . ; c2g of the
relative Betti homology of Aan above Uðs0Þ (a more specific choice of bases will be given in
§3). A basis of horizontal vectors of ‘ is then represented by the inverse of the fundamental
matrix of periods and quasi-periods

PðsÞ ¼

Ð
ci

ojÐ
ci

hj

0
BB@

1
CCA ¼ W1ðsÞ W2ðsÞ

H1ðsÞ H2ðsÞ

� �
;

whose coe‰cients extend over S an to multivalued meromorphic functions in s. By defini-
tion, they generate over Lnk C ¼ CðsÞ a Picard-Vessiot extension

F ¼ C
�
s;PðsÞ

�
:

In particular, F is stable under the partial derivatives q ¼ fq1; . . . ; qdimSg given by a basis
over L of the dual DerðL=kÞ of W1L=k, and by the main theorem of Picard-Vessiot theory,
tr deg

�
F=CðsÞ

�
¼ dimGalð‘Þ.

Assume now that the family f is ‘as generic as possible’, or more precisely (cf. [D1],
§4.4.14.1) that the induced morphism ff from S to one of the components of the moduli
space of principally polarized abelian varieties is dominant. We then have:

Lemma 1 ([D1], Lemme 4.4.16). The image of p1ðS; s0Þ under r has finite index in the
group AutcBðHBÞ of symplectic automorphisms of HB.

The genericity hypothesis holds tautologically when S is the moduli scheme of prin-
cipally polarized abelian varieties with a level structure of orderf3, hence, in the nota-
tions of §1, when S ¼ SðGÞ, endowed with the corresponding universal abelian scheme f

(cf. [MF], Appendix 7, A–B). In this case, L is isomorphic to K ¼ KðG; kÞ ¼ kðlÞ, and we
shall write indi¤erently l for s, e.g.

PðsÞ ¼ PðlÞ; q ¼ q

ql
:¼ fq=ql1; . . . ; q=qlng;

while the multivalued map l 7! PðlÞ lifts (after a choice of a base point t0 above s0) to a
meromorphic map

t A Hg 7! ~PPðtÞ :¼ P
�
lðtÞ

�
¼

~WW1ðtÞ ~WW2ðtÞ
~HH1ðtÞ ~HH2ðtÞ

� �

on the universal covering manifold Hg of S
anFGnHg. Lemma 1 then implies that

Galq=qlðF=KnCÞ ¼ Galð‘Þ ¼ AutcBðHBnCÞF Sp2gðCÞ so that

tr deg
�
F=CðlÞ

�
¼ dimSp2g;

hence
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Proposition 1. Assume that S ¼ SðGÞ, where G is any congruence subgroup of

Sp2gðZÞ. Then,

tr deg
�
C
�
l;PðlÞ

�
=C
�
¼ dimðSp2g � ZgÞ:

Proof. tr degðF=CÞ ¼ tr deg
�
F=CðlÞ

�
þ tr deg

�
CðlÞ=C

�
¼ dimSp2g þ n, which is

dimðSp2g � ZgÞ.

Remark 1. In the sequel, the intermediate fields

Fk :¼ k
�
l;PðlÞ

�
; Ck :¼ k l;

1

2pi
W1ðlÞ;

1

2pi
H1ðlÞ

� �

will be used. Since ‘q acts on the K-vector space H for any q A DerðK=kÞ, they are still
q=ql-di¤erential extensions of K, but even Fk is in general not a Picard-Vessiot extension.
Indeed, the generalized Riemann relations (i.e. the reciprocity law for di¤erentials of the
second kind on A; cf. [B], pp. 37–38, or [D2], Proposition 1.5, in connection with the
form cdR introduced below) show that the q=ql-constant p lies in Fk, although not in K
if k ¼ Qalg. In a sense, it is the field Ckð2pitÞ which gives the required Picard-Vessiot
extension, but it is not a field of periods in the usual sense: it will in general contain neither
t, nor 2pi! Also, note that these Riemann relations (written in the standard bases) imme-
diately imply that tr deg

�
F=CðsÞ

�
e 2g2 þ g for any family A ! S: once W1 is chosen (at

most g2 degrees of freedom), they leave at most gðgþ 1Þ=2 degrees of freedom for the
entries of W2, at most gðgþ 1Þ=2 for those of H1, and none for H2.

§3. Periods of the first kind and their derivatives

Let f : A ! S be a principally polarized abelian scheme S as in §2. In order to
prepare for a modular study of the period matrix PðsÞ, we shall need some well-known
infinitesimal properties of the structural morphism ff . Recall that in parallel with cB, the
polarisation on As provides a non-degenerate antisymmetric form cdR on H :¼ H 1dRðA=LÞ
with values in L, which admits as maximal isotropic subspace the L-vector space
W :¼ W1A=L of H formed by the (cohomology classes of ) di¤erentials of the first kind on
A=L, so that H=W is canonically isomorphic to the L-dual W�FLieðA=LÞ of W.

When writing PðsÞ, we may choose a cB-symplectic basis2) of the Betti homology
for fc1; . . . ; c2gg, and a basis of W over L for o1; . . . ;og. Then, W1ðsÞ is invertible, and
tðsÞ :¼ W1ðsÞ�1W2ðsÞ is one of the points in Hg parametrizing the principally polarized
abelian variety As. As for the last g rows of PðsÞ, we describe them with the help of the
Kodaira-Spencer map

kf : DerðL=kÞ ! HomðW;H=WÞF ðW�Þn2: q 7! fo 7! ‘qðoÞ modWg

attached to f (cf. [L], p. 157). Note that the image of kf is contained in Sym
2ðW�Þ, because

cdR is horizontal for ‘.

2) We order this basis in such a way that t ¼ W�1
1 W2 A Hg; then, G acts on the ðg� 2gÞ-matrix�

~WW2ðtÞ~WW1ðtÞ
�
¼ ~WW1ðtÞðt 1gÞ by the transpose of its standard representation.
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Assume now that f is ‘su‰ciently generic’ in the sense of §2. Since kf represents the
tangent map to the morphism ff at the generic point s of S, its rank then coincides with
gðgþ 1Þ=2 and kf maps onto Sym2ðW�Þ (cf. [K], p. 169, and [P], p. 255). Therefore, there
exists a partial derivation q0 A DerðL=kÞ whose image under kf is an isomorphism from W
to H=W. In particular, the di¤erential forms of the second kind fhl ¼ ‘q0ðolÞ; 1e l e gg

lift a basis of H=W over L. Since
Ð
c

‘qðoÞ ¼ q
Ð
c

o

� �
for any q A DerðL=kÞ, o A H, c A HB,

we then infer that H1ðsÞ (resp. H2ðsÞ) are the q0-derivatives of W1ðsÞ (resp. W2ðsÞ). In other
words, PðsÞ takes in such bases the shape

PðsÞ ¼
W1ðsÞ W1ðsÞtðsÞ
q0W1ðsÞ q0

�
W1ðsÞtðsÞ

�� �
:

This certainly implies that the q-stable field F ¼ C
�
s;PðsÞ

�
is generated over CðsÞ by

W1ðsÞ, tðsÞ, qW1ðsÞ, qtðsÞ (recall that q stands for a basis of DerðL=kÞ), and more pre-
cisely, that the q-stable field Fk of Remark 1 can be written as

Fk :¼ k
�
s;PðsÞ

�
¼ k

�
s;W1ðsÞ; tðsÞ; qW1ðsÞ; qtðsÞ

�
:

Similarly, each of the columns of the fundamental matrix of solutions PðsÞ generates over
L a q-stable field, and by the same argument, the q-stable field Ck of Remark 1 reads

Ck :¼ k s;
1

2pi
W1ðsÞ;

1

2pi
H1ðsÞ

� �
¼ k

 
s;
1

2pi
W1ðsÞ; q

1

2pi
W1ðsÞ

� �!
:

In order to compare Fk with the (still to be defined) fields F and ~MM of our diagram,
we restrict from now on to the modular situation of Proposition 1, with S ¼ SðGÞ, s ¼ l,
L ¼ K, ~WW1ðtÞ ¼ W1

�
lðtÞ

�
, etc. It will be useful (though not strictly necessary, cf. Remark 2

below) to choose an explicit basis of the K-vector space W. We appeal to Shimura’s dif-
ferentials ([S], §30) for such a specification, and to fix notations, henceforth assume that
G ¼ G4;8, so that SðGÞ is the moduli scheme of principally polarized abelian varieties with
ð4; 8Þ-level structure (cf. [MF], pp. 193–195).

Consider the full set of abelian theta functions with two-characteristics
fQaðz; tÞ; a A ðZ=2ZÞ2gg, as given in §5 below. Then, fz 7! Qað2z; tÞ; a A ðZ=2ZÞ2gg defines
a projective embedding of Cg=ðZgl tZgÞ (cf. [I], pp. 169 and 171), whose image can be
identified with the generic fiber AlðtÞ of the corresponding universal family. Therefore (cf.
[S], Lemma 30.2), we can choose Q0 ¼ Qð0;0Þ and g odd theta functions Q1; . . . ; Qg amongst
them such that the jacobian matrix at z ¼ 0 of the map

z 7!
 

Qj

Q0

z

2pi
; t

� �
; j ¼ 1; . . . ; g

!

is invertible. Because of parities, this jacobian reads tPðtÞ, where

PðtÞ ¼ 1

2piQ0ð0; tÞ
�

qQ1

qz1
ð0; tÞ � � � qQ1

qzg
ð0; tÞ

� � � � � � � � � � � � � � � � � � � � � � � � � �
qQg

qz1
ð0; tÞ � � � qQg

qzg
ð0; tÞ

0
BBBBB@

1
CCCCCA:

Bertrand and Zudilin, Derivatives of modular forms 53



Lemma 2 ([S], Theorem 30.3 and Formula (30.2f )). Let t A Hg, and let l ¼ lðtÞ. The
relation

ðo1; . . . ;ogÞ ¼ ðdz1; . . . ; dzgÞ2pi tPðtÞ

defines a basis of di¤erential forms of the first kind on the abelian variety AlðtÞ which are

rational over the field K ¼ kðlÞ, and which admit 2piPðtÞð1g tÞ as period matrix. In partic-

ular, ð1=2piÞ~WW1ðtÞ ¼ PðtÞ in such a basis.

Recall the notations at the beginning of §1, and set further:

x ¼ the map from F ¼ C
�
l;PðlÞ

�
to the field of meromorphic functions on Hg which

lifts an element f ðlÞ A F to �
xð f Þ

�
ðtÞ ¼ ~ff ðtÞ :¼ f

�
lðtÞ

�
;

relatively to the bases fq=qlg and fd ¼ q=piqtg, the di¤erential of the covering map l

corresponding to x is given by ðd1; . . . ; dnÞ ¼ ðq=ql1; . . . ; q=qlnÞ tWðtÞ, whereWðtÞ denotes
the invertible matrix

WðtÞ :¼ ql

piqt

� �
ðtÞ ¼

d1l1 � � � d1ln

� � � � � � � � � � � � � � � � �
dnl1 � � � dnln

0
B@

1
CA:

~MM :¼ k
�
lðtÞ;PðtÞ; dPðtÞ; dlðtÞ

�
¼ k

�
lðtÞ;PðtÞ; dPðtÞ;W ðtÞ

�
(since lnþ1; . . . ; lN are

algebraic over the field K ). A simpler description of ~MM will presently be given, cf. Remark
2 below.

F :¼ ~MMð2pit; 2piÞ.

The field F being thus defined, we can now relate it to the fields of periods F of §1,
as follows.

Proposition 2. Assume that S ¼ SðGÞ, with G ¼ G4;8. Then, x induces an isomorphism
from Fk ¼ k

�
l;PðlÞ

�
onto F. Moreover, both fields F and ~MM are stable under the partial

derivatives d ¼ q=piqt.

Proof. We already know that

xðFkÞ ¼ k

 
lðtÞ; 2piPðtÞ; t; 2pix q

ql
PðlÞ

� �
; x

q

ql
tðlÞ

� �!
;

and that it contains 2pi. Now, for any f A F,

�
d1
�
xð f Þ

�
; . . . ; dn

�
xð f Þ

��
¼
 
x

qf

ql1

� �
; . . . ; x

qf

qln

� �!
tWðtÞ;
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for instance, pix
�
ðq=qlÞtðlÞ

�
can be written as the inverse of the matrix WðtÞ, and

they have the same field of definition. Therefore, xðFkÞ is generated over k by 2pi, 2pit,
lðtÞ, PðtÞ, dPðtÞ, and WðtÞ, which precisely constitute a set of generators for F=k. As
for the second part of Proposition 2, note that Fk is q=ql-stable, so that xðFkÞ ¼ F is

ðq=piqtÞtWðtÞ�1-stable, hence q=piqt-stable as well, since the coe‰cients of tWðtÞ�1 lie in
F. Similarly, we know that the subfield Ck of Fk generated over K by the first g columns of
ð1=2piÞPðlÞ is stable under q=ql, and the same argument implies that ~MM ¼ xðCkÞ

�
WðtÞ

�
too is q=piqt-stable.

Remark 2. In view of [S], Formula 30.2d (or more simply, of the monodromy action
on periods, cf. Footnote2)), tP is a modular tensor relative to the standard representation r
of GLgðCÞ, i.e.:

tPðgtÞ ¼ ðctþ dÞtPðtÞ for all g ¼ a b

c d

� �
A G:

On the other hand, it is a well-known fact that the d-derivatives of any modular function l0
can be arranged into a (meromorphic) Sym2 r-modular tensor; in other words (cf. Formula
(4) of §5 below):

ðdl0ÞðgtÞ ¼ ðctþ dÞ � ðdl0ÞðtÞ � tðctþ dÞ for all g ¼ a b

c d

� �
A G:

Consequently, the matrix valued functions tP�1dljP
�1, j ¼ 1; . . . ; n, are invariant under G.

Looking at their Fourier expansions, we deduce that their entries all belong to the field
K ¼ KðG; kÞ ¼ kðlÞ. Therefore, the last set of generators dlðtÞ (equivalently: the entries of
W ðtÞ) occuring in the definition of ~MM already lies in the field K

�
PðtÞ

�
generated by the first

two ones, i.e. kðl; dlÞH kðl;PÞ, and in parallel with F ¼ xðFkÞ, we finally obtain

~MM ¼ k
�
lðtÞ;PðtÞ; dPðtÞ

�
¼ k lðtÞ; 1

2pi
~WW1ðtÞ;

1

2pi
~HH1ðtÞ

� �
¼ xðCkÞ

as a simpler expression for the field ~MM of the diagram of §1.

In fact, this type of argument can be reversed (using the fact that dl1; . . . ; dln
form a basis of the K-vector-space of meromorphic Sym2 r-modular tensors), and
implies that all binomials in the entries of PðtÞ belong to the field KðdlÞ. In particular,
kðl;PÞH

�
kðl; dlÞ

�alg
. We shall give a precise version of this statement in Proposition 4

of §5, but notice that the above proofs and results extend to the study of ð1=2piÞ~WW1ðtÞ,
ð1=2piÞ ~HH1ðtÞ for any congruence subgroup G of Sp2gðZÞ.

§4. Proof of Theorems 1 and 2

We now complete the proof of Theorems 1 and 2 in four steps. Since the algebraic
closure of KðG; kÞ, hence of MðG; kÞ, is independent of the group G, Theorem 1 is a cor-
ollary of Theorem 2 and for simplicity, we throughout assume that G ¼ G4;8, although this
hypothesis may truly be needed only in the last step: the first three ones are valid for all G’s,
and su‰ce for the proof of Theorem 1.
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For each m ¼ 0; 1; . . . ;y, we denote by K ðmÞ the field generated over k by the par-
tial derivatives of orderem with respect to d ¼ q=piqt of all the elements of K. Thus,
K ð0Þ ¼ KHK ð1Þ ¼ KðdlÞH � � �HK ðyÞ ¼ M. All these fields, as well as ~MM, F and the ring
R, are contained in the field of meromorphic functions on Hg.

Step 1. RH ðK ð1ÞÞalg (hence RHM alg).

It su‰ces to prove that K ð1Þ contains a non-zero meromorphic modular form D of
positive weight w, since for any modular form f of weight wð f Þ, f w=Dwð f Þ will then lie in
K. (Incidentally, this further implies that the logarithmic derivatives df =f of f belong to
K ð2Þ.) An explicit choice for D is given in Lemma 4 of §5, but here is a general construction,
along the lines of Remark 2 of §3. Since the d-derivatives of any modular function l0 make
up a (meromorphic) Sym2 r-modular tensor dl0 with respect to the standard representation
r of GLgðCÞ, and since the representation Lgðgþ1Þ=2ðSym2 rÞ of GLgðCÞ is isomorphic to
ðLgrÞnðgþ1Þ, the exterior product DðtÞ of dl1; . . . ; dln is a non-zero, meromorphic modular
form of weight gþ 1. Now, DðtÞ is given in coordinates by the determinant detðql=piqtÞ of
the matrix WðtÞ introduced in §3, which clearly lies in k

�
l; dðlÞ

�
¼ K ð1Þ.

Step 2. K ð2Þ HMH ~MMH ðK ð2ÞÞalg (hence M is finite over K ð2Þ).

The first inclusion is trivial. Since M is the d-di¤erential field generated by K, the
second one follows from the stability of ~MMIK under di¤erentiation (cf. Proposition 2).
To check the last one, we appeal to Proposition 4 (i) of §5, according to which

1

2piQ0

qQa

qzj

����
z¼0

� �2
¼ 1

2g�1
P

b A ðZ=2ZÞ2g
ð�1Þ

ta 0b 00 Qaþb

Q0

� �2
Qb

Q0

� �2
djjðQaþb=Q0Þ
Qaþb=Q0

for any odd theta function Qa. Since quotient of thetanulls are modular functions for G4;8,
this implies that the entries of PðtÞ are algebraic over K ð1Þ (see the end of Remark 2 for an
implicit argument). Both P and dP (and of course dl) are then algebraic over K ð2Þ, and ~MM,

hence M, is a finite extension of K ð2Þ.

Step 3. tr deg
�
Mð2pitÞ=k

�
¼ dimðSp2g � ZgÞ.

From the explicit expression of the Fourier expansions of its generators, we infer
that ~MM embeds in the fraction field of the ring of convergent Puiseux series in expð2pitjlÞ,
1e je l e g, with coe‰cients in k. Since this field is linearly disjoint from CðtÞ over k,
and sinceM and ~MM have the same algebraic closure by Step 2, we deduce from Proposition
2 that

tr deg
�
Mð2pitÞ=k

�
¼ tr deg

�
~MMð2pitÞ=k

�
¼ tr deg

�
~MMð2pitÞ:C=C

�
¼ tr degðF :C=CÞ ¼ tr degðFk:C=CÞ

¼ tr degðF=CÞ;

which Lemma 1 shows to be equal to dimðSp2g � ZgÞ.
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Step 4. M ¼ K ð2Þ if G ¼ G4;8 (and consequently, as soon as GHG4;8).

We must show that for any modular function l0 relative to G4;8, the components of
dð3Þl0 are rational (rather than just algebraic) over the field K

ð2Þ. In view of Igusa’s theo-
rem, l0 can be expressed as a rational function in the quotients fQa=Q0; a A ðZ=2ZÞ2gg, and
Proposition 3 below implies that both dð2Þl0 and dðdQ0=Q0Þ are defined over K ð1ÞðdQ0=Q0Þ.
Consequently, dð3Þl0 A K ð2ÞðdQ0=Q0Þ. Since dQ0=Q0 A K ð2Þ by Step 1, it follows that
dð3Þl0 A K ð2Þ.

We conclude this section with two remarks on Theorem 1 and its proof.

Remark 3. In the case of an arbitrary family of abelian varieties f : A ! S, the
algebraic group Sp2g must be replaced by the Hodge group GA of its generic fiber A.
Although not always, an equality Galð‘Þ ¼ GAnC as in Lemma 1 of §1 often holds, cf.
[A1]; the above method can then be extended to the study of the corresponding field of
automorphic functions. One can thus show that the di¤erential field generated by Hilbert
modular functions (relative to a totally real number field of degree g) has transcendence
degree 3g over C. See [Re] for some results in this direction, and for an explicit form of the
corresponding di¤erential equations.

Remark 4. Going back to the generic situation where S ¼ SðGÞ, denote by C the
field of definition of the ‘first periods’ of A=K , i.e. the compositum of the field

Ck ¼ k l;
1

2pi
W1ðlÞ;

1

2pi
H1ðlÞ

� �

with C, and view the group Zg as an algebraic subgroup of Sp2g via the usual map

fU A Zgg 7! 1g U

0 1g

� �
A Sp2g

	 

. By Lemma 1 (i.e. by Picard-Lefschetz theory), the field

C coincides with the subfield of the Picard-Vessiot extension F=CðlÞ invariant under Zg.
Combined with the relation xðCkÞ ¼ ~MM from Remark 2, this provides a direct proof that
tr degðM=KÞ ¼ codimSP2gðZgÞ when k ¼ C.

When k ¼ Qalg, this point of view (extended to the case of Shimura varieties,
as in the previous remark) may prove useful in the study of the transcendence degree
of the field of periods of abelian varieties defined over Qalg. In fact, the inclusions
K ð1ÞH kðl;PÞH ðK ð1ÞÞalg, K ð2ÞH ~MM ¼ xðCkÞH ðK ð2ÞÞalg obtained in the course of our
proof (cf. §3, Remark 2 and §4, Step 2), i.e.

kðl; dlÞH k l;
1

2pi
~WW1

� �
H
�
kðl; dlÞ

�alg
;

kðl; dl; dð2ÞlÞH k l;
1

2pi
~WW1;
1

2pi
~HH1

� �
H
�
kðl; dl; dð2ÞlÞ

�alg
;

generalize the classical fact that the quotient by 2pi of the periods and quasi-periods of an
elliptic curve along a locally invariant cycle can be expressed both as values of hyper-
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geometric functions and in terms of modular forms. See [A2] for an approach to Chud-
novsky’s theorem on fo=2pi; h=2pig based on these relations, which, in genus 1, translate
into the classical formulae

o1

2p
¼ 2F1

1

2
;
1

2
; 1; l

� �
¼ Q200;

h1
2p

¼ 2F1 � 1
2
;
1

2
; 1; l

� �
¼ 1

3Q200
2Q400 � Q410 � 4

1

pi

d

dt
LogðQ00Q10Q01Þ

� �
;

where l ¼ ðQ10=Q00Þ4 is Legendre’s modular function, whose derivative satisfies

1

pi

dl

dt
¼ lQ401 ¼ lð1� lÞQ400:

§5. Miscellaneous on theta functions

In this section, we give the explicit formulae on derivatives of theta functions already
used or mentioned in Steps 4, 2, and 1 of §4.

We define the (abelian) theta function with characteristic a ¼ ða 0; a 00Þ A Z2g by the
convergent series

QaðzÞ :¼ Qaðz; tÞ ¼
P

n AZg

exp

 
pi

t

nþ 1
2
a 0

� �
t nþ 1

2
a 0

� �
þ 2pi

t

nþ 1
2
a 0

� �
zþ 1
2
a 00

� �!

where z A Cg is a vector-column and t A Hg. The quasi-periodicity of these functions with
respect to the lattice Zg þ tZgHCg allows us to consider only reduced characteristics
a A K ¼ f0; 1g2g,KK ¼ 22g. In the customary fashion, we identify f0; 1g with its image in
Z=2Z, and set for all a ¼ ða 0; a 00Þ, b ¼ ðb 0; b 00Þ A K:

jaj ¼ ta 0 � a 00; ha; bi ¼ ta 0b 00 � tb 0a 001 jaþ bj þ jaj þ jbj ðmod2Þ:

Thetanulls are the values of even theta functions at the point z ¼ 0. When no confu-
sion may arise, we denote them by Qa ¼ QaðtÞ :¼ Qað0; tÞ. Since Qað�z; tÞ ¼ ð�1ÞjajQaðz; tÞ,
a theta function Qaðz; tÞ is even if and only if the number jaj is even. Hence all non-zero
thetanulls are assigned to even characteristics from the set Kþ ¼ fa A K : jaj1 0 ðmod2Þg,
KKþ ¼ 2g�1ð2g þ 1Þ, and trivial ones correspond to odd characteristics from K� ¼ KnKþ.

We recall (cf. [I], pp. 185 and 171) that the thetanulls are modular forms of weight
1

2
for

G4;8.

In order to describe the partial logarithmic derivatives of the thetanulls

ca; jl ¼ ca; jlðtÞ :¼
djlQa

Qa
¼ ca; lj; a A Kþ; j; l ¼ 1; . . . ; g;ð1Þ
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with respect to the derivations d:

djj ¼
1

pi

q

qtjj
; j ¼ 1; . . . ; g; djl ¼

1

2pi

q

qtjl
¼ dlj; j; l ¼ 1; . . . ; g; j3 l;

of §1, we use the following conventions. To any meromorphic function f : Hg ! C, we
assign a meromorphic function with values in the space of quadratic forms in u A Cg by
the formula

df ðuÞ ¼
Pg
j; l¼1

djl f � ujul :

Then,

caðuÞ ¼
dQaðuÞ
Qa

¼
Pg
j; l¼1

ca; jl � ujul

is the quadratic form corresponding to the symmetric matrix ca ¼ ðca; jlÞj; l¼1;...;g, a A Kþ.
To two quadratic forms f; h in u A Cg, we attach the quartic form fn h :¼ fh given by

fhðuÞ ¼
Pg

j; l;m; p¼1
fjlhmp � ujulumup;

and when f has meromorphic coe‰cients, we denote by df the quartic form

dfðuÞ ¼
Pg

j; l;m; p¼1
djlfmp � ujulumup:

With (1) and these conventions in mind, the system of di¤erential equations on which
Step 4 of §4 is based can then be stated as an equality between quartic forms, as follows.

Proposition 3 ([Z], Theorem 1). For all a A Kþ, the thetanulls satisfy the system of

second order partial di¤erential equations

Q4a � dca ¼
1

2g�2
P

b AKþ

ð�1Þha;biQ4b � c2b � 2Q4a � c2a ; a A Kþ:

To allow for a comparison with the case of low degrees g in §6, consider the rings

Qg ¼ Q½Qa;ca; jl�a AKþ; j; l¼1;...;g and Q 0
g ¼ Q½ca; jl �a AKþ; j; l¼1;...;g:ð2Þ

Proposition 3 then implies that the fraction field of Qg is stable under d, and (in the
notations of §4) that its compositum with k coincides with the d-di¤erential field MðQ0Þ
generated by kðQaÞa AKþ

¼ KðQ0Þ.

Contrary to the case g ¼ 1, where Jacobi’s well-known formula expresses the
z-derivative at z ¼ 0 of the unique odd theta function as a product of thetanulls, the
z-derivatives of odd theta functions at z ¼ 0 in higher degrees are not modular forms.
However, they are algebraic over the field K ð1Þ of §4, and integral over the ring Qg. Indeed:
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Proposition 4. For all a A K�, j ¼ 1; . . . ; g, the following equalities hold:

(i)
1

2piQ0

qQa

qzj

����
z¼0

� �2
¼ 1

2g�1
P

b AKþ

ð�1Þ
ta 0b 00 Qaþb

Q0

� �2
Qb

Q0

� �2
ðcaþb; jj � c0; jjÞ;

(ii)
1

2pi

qQa

qzj

����
z¼0

� �4
¼ 1

2g�2
P

b AKþ

ð�1ÞjaþbjQ4bc
2
b; jj:

Proof. (i) We shall use the quartic Riemann relations in the following form, valid
for all characteristics a; c A K:

Q2aþcðzÞQ2aðzÞ ¼
1

2g
P
b AK

ð�1Þha;bið�1Þ
tc 0ða 00þb 00ÞQbþcð2zÞQbþcð0ÞQ2bð0Þð3Þ

(see [Kr], VII, §10), together with the heat equation

djlQaðz; tÞ ¼
1

ð2piÞ2
q2

qzjqzl
Qaðz; tÞ; a A K; j; l ¼ 1; . . . ; g

(see, e.g., [Kr], I, §5, Satz 13), which allows to write the Taylor expansions of even theta
functions as

QbðzÞ ¼ Qb � 1þ
ð2piÞ2

2
cbðzÞ

 !
þOðz4Þ; b A Kþ:

Notice that in Riemann’s formula (3), only even characteristics b; bþ c actually appear on
the right-hand side. Setting a ¼ c A K� in (3), we derive

Q20ðzÞQ
2
aðzÞ ¼

1

2g
P

b AKþ

ð�1Þ
ta 0b 00

Qaþbð2zÞQaþbð0ÞQ2bð0Þ:

Since a is odd, the Taylor expansion of the left-hand side of this formula reads

Q20 � tz � qQa
qz

����
z¼0

� �2
þOðz4Þ:

Equating quadratic terms, we obtain

Q20 � tz � qQa
qz

����
z¼0

� �2
¼ ð2piÞ2

2g�1
P

b AKþ

ð�1Þ
ta 0b 00

Q2aþbQ
2
b � caþbðzÞ:

Furthermore,

P
b AKþ

ð�1Þ
ta 0b 00

Q2aþbQ
2
b ¼ 0;
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since no constant term appears on the left-hand side. Multiplying the latter relation by
c0ðzÞ and substracting, we finally get

Q20 � tz � qQa
qz

����
z¼0

� �2
¼ ð2piÞ2

2g�1
P

b AKþ

ð�1Þ
ta 0b 00

Q2aþbQ
2
b � ðcaþb � c0ÞðzÞ;

and Proposition 4 (i) follows on considering the z2j -term of these quadratic forms.

(ii) Setting a A K�, c ¼ 0 in Riemann’s formula (3), and developing the Taylor
expansions

QbðzÞ ¼ Qb � 1þ
ð2piÞ2

2
cbðzÞ þ

ð2piÞ4

24
ðc2b þ dcbÞðzÞ

 !
þOðz6Þ; b A Kþ;

of even theta functions to the fourth order (cf. [Z], §2, Lemma 2), we derive from Formula
(3) the equality of quartic forms

tz � qQa
qz

����
z¼0

� �4
¼ ð2piÞ4

3 � 2g�1
P

b AKþ

ð�1Þha;biQ4b � ðc2b þ dcbÞðzÞ:

In view of Proposition 3 and the identity

P
b AKþ

ð�1Þhaþc;bi ¼ ð�1Þjaþcj � 2g�1; a A K�; c A Kþ

(cf. [Z], §3, Lemma 7), this transforms into

tz � qQa
qz

����
z¼0

� �4
¼ ð2piÞ4

2g�2
P

b AKþ

ð�1ÞjaþbjQ4b � c2b ðzÞ; a A K�;

and Proposition 4 (ii) follows on considering the z4j -term of these quartic forms.

The next statement holds for all pairs a; b A Kþ of distinct even characteristics (and a
sharper result will be given in Formula (6a) below in the case of degree 2), but one instance
su‰ces for our purpose (cf. §4, Step 1). Recall that ca denotes the symmetric matrix dQa=Qa
attached to the quadratic form ca.

Lemma 4. There exists even characteristics a; b such that detðcb � caÞ is a non-zero

meromorphic modular form of weight 2 with respect to G4;8.

Proof. Since l0 ¼ Qb=Qa is a modular function,

ðdl0ÞðgtÞ ¼ ðctþ dÞ � ðdl0ÞðtÞ � tðctþ dÞ; g ¼ a b

c d

� �
A G4;8ð4Þ

(see [Z], §8, Lemma 16), where dl0 is arranged as a symmetric matrix, and we obtain that

ha;b :¼ det
dl0
l0

� �
¼ detðcb � caÞ; a; b A Kþ; a3 b;

is a meromorphic modular form of weight 2.
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We now show that ha;b is non-zero for a ¼ ða 0; a 00Þ ¼ ð0; 0Þ A Kþ and
b ¼ ðb 0; b 00Þ ¼ ð1; 0Þ A Kþ, where 1 is a g-vector-column with unit entries. Choosing
t ¼ t1g A Hg, where t A H1, we get from the definition of the theta functions

Qaðz; t1gÞ ¼
Qg
j¼1

Q00ðzj; tÞ and Qbðz; t1gÞ ¼
Qg
j¼1

Q10ðzj; tÞ;

here, Q00ðz; tÞ and Q10ðz; tÞ stand for the usual elliptic theta functions. Taking q2=qzj qzl-
derivatives and evaluating at z ¼ 0, we deduce from the heat equations in degrees g and 1,
and from the even character of Q00ðz; tÞ, that

ca; jlðt1gÞ ¼
1

Q00

qQ00

piqt
ð0; tÞ :¼ c00ðtÞ if j ¼ l;

0 if j3 l:

8<
:

Similarly, cb; jlðt1gÞ vanishes if j3 l and is otherwise equal to c10ðtÞ. Thus, ðcb � caÞðt1gÞ
is a diagonal matrix, with determinant

ha;bðt1gÞ ¼ detðcb � caÞðt1gÞ ¼
�
c10ðtÞ � c00ðtÞ

�g
:

Now, Legendre’s modular function l ¼ ðQ10=Q00Þ4 is not constant, so that

c10 � c00 ¼
1

4l

ql

piqt
3 0;

and ha;b is indeed a non-zero degree g modular form.

§6. The di¤erential ring of thetanulls in genus 2

Theorem 2 can be sharpened when g ¼ 1 and g ¼ 2, because in both of these cases,
the rings

Qg ¼ Q½Qa;ca; jl �a AKþ; j; l¼1;...;g and Q 0
g ¼ Q½ca; jl�a AKþ; j; l¼1;...;g

generated over Q by the thetanulls and their logarithmic derivatives (cf. §5, (1), (2)) are
themselves stable under derivation.

First, we consider the well-known case g ¼ 1 where we have three even charac-
teristics, Kþ ¼ f00; 01; 10g. In this case there exists only one parameter t ¼ t11, and the
notations d, ca, need no jl-indexation. The rings Q1 and Q

0
1 are d-stable, since dQa ¼ Qaca,

a A Kþ, by definition, while

dc10 ¼ 2ðc10c00 þ c10c01 � c00c01Þ;

dc00 ¼ 2ðc10c00 þ c00c01 � c10c01Þ;

dc01 ¼ 2ðc10c01 þ c00c01 � c10c00Þ
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(this system was discovered by G. Halphen in 1881). Moreover, Q1 is integral over Q
0
1,

in view of the formulae

Q400 ¼ 4ðc10 � c01Þ; Q401 ¼ 4ðc10 � c00Þ; Q410 ¼ 4ðc00 � c01Þ

(see [Z], Introduction). By [Ra], [M] or Theorem 2, both rings Q1 and Q
0
1 have transcen-

dence degree 3 over Q.

In the case g ¼ 2, we use for simplicity the map ðZ=2ZÞ2 ! f0; 1; 2; 3g,

ð0; 0Þ 7! 0; ð0; 1Þ 7! 1; ð1; 0Þ 7! 2; ð1; 1Þ 7! 3;

to represent a characteristic a ¼ ða 0; a 00Þ A ðZ=2ZÞ2 � ðZ=2ZÞ2 by two digits only. Then,

Kþ ¼ f00; 01; 02; 03; 10; 12; 20; 21; 30; 33g:

We renumerate the entries of the matrix t as t1 ¼ t11, t2 ¼ t22, and t3 ¼ t12, and proceed
similarly with the derivations

d ¼ d1 ¼
1

pi

q

qt1
; d2 ¼

1

pi

q

qt2
; d3 ¼

1

2pi

q

qt3

	 

;

and with the ca-notation.

Theorem 3. (i) In the case g ¼ 2, the rings

Q2 ¼ Q½Qa;ca; j�a AKþ; j¼1;2;3 and Q 0
2 ¼ Q½ca; j�a AKþ; j¼1;2;3

are stable under the derivations dj, j ¼ 1; 2; 3.

(ii) All thetanulls are algebraic over Qðca; jÞa AKþ; j¼1;2;3.

(iii) Both rings Q2 and Q
0
2 have transcendence degree 10 over Q.

(iv) A possible choice for ten elements of Q2, algebraically independent over Q, is
given by

Q00; Q01; Q02;c00;1;c01;1;c02;1;c00;2;c01;2;c02;2;c00;3:

Proof. (i) Let a1 ¼ a, a2 ¼ aþ c, a3 ¼ aþ d, a4 ¼ aþ cþ d be four di¤erent even
characteristics (such a collection fa1; a2; a3; a4g is called a Göpel system, and there exist fif-
teen Göpel systems). Then

dðca1
þ ca2

þ ca3
þ ca4

Þ ¼ ðca1
þ ca2

þ ca3
þ ca4

Þ2 � 2ðc2a1 þ c2a2 þ c2a3 þ c2a4Þ:ð5aÞ

System (5a), which was obtained in [O], provides an expression for each dca, a A Kþ.
Namely (cf. [Z], §6, Formulae (6.17)):

dca ¼ �2c2a � 1
3

P
b AKþ

c2b � 1
6

� P
b AKþ

cb

�2
þ 1
4

P
G C a

P
b AG

cb

� �2
; a A Kþ;ð5bÞ
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where the summation
P
G C a
goes over all di¤erent Göpel systems containing a. The dif-

ferential stability of Q 0
2 is clear from (5b), and that of Q2 then follows from the defining

equations (1).

(ii) This result (which is not the statement of algebraicity over K ð1Þ given in Step 1 of
§4) is shown in Theorem 6 of [Z]. Here is a sketch of its proof. Let a; b A Kþ, a3 b. As
noticed in §5, Lemma 4,

ha;b ¼ hb;a :¼ detðca � cbÞ ¼ ðca;1 � cb;1Þðca;2 � cb;2Þ � ðca;3 � cb;3Þ
2

is a meromorphic modular form of weight 2, so that Q2aQ
2
bha;b is a holomorphic modular

form of weight 4 with respect to G4;8. By the sharper version of Igusa’s theorem in the
genus 2 case, any such form can be expressed as a polynomial in thetanulls, and indeed,

ha;b ¼G
1

24
Q

c AKþ

Q2c �
Q

GIfa;bg

Q
d AG

Q�2d

� �
;ð6aÞ

(see [Z], §8, Lemma 20 (a), and Formula (6c) below for an explicit expression); here, the
product

Q
GIfa;bg

goes over all (i.e. the two) Göpel systems containing a and b, and the only

term that appears in the denominator of the right-hand side of (6a) is Q2aQ
2
b .

Multiplying formulae (6a) for fixed a over all b3 a, and then over all di¤erent pairs
a; b, we get (cf. [Z], (8.30))

Q72a ¼G2�4�27
Q

c AKþ

Q18c �
Q

b AKþ
b3a

h�3a;b ¼G272
Q

di¤erent
pairs c;d

hc;d �
Q

b AKþ
b3a

h�3a;b; a A Kþ:ð6bÞ

Consequently, all thetanulls are algebraic over Qðca; jÞa AKþ; j¼1;2;3.

(iii) Recalling the notations of §4, we infer from (i) and (ii) above that M and the
fraction fields of Q 0

2 and of Q2 have the same algebraic closure. Since 2g
2 þ g ¼ 10, the

result immediately follows from our Theorem 2.

(iv) We shall find a maximal set of algebraically independent elements in the ring Q2
by exhibiting thirty independent relations between its fourty generators3).

Specializing the Riemann relations (3) used in the proof of Proposition 4 to the case
c A f01; 02; 03g, a ¼ 00, we obtain

Q200Q
2
01 � Q202Q

2
03 ¼ Q220Q

2
21; Q200Q

2
02 � Q201Q

2
03 ¼ Q210Q

2
12;ð3aÞ

Q200Q
2
03 � Q201Q

2
02 ¼ Q230Q

2
33;

3) We do not claim that these relations generate a full ideal of definition for Q2.
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while the case c ¼ 00 yields

Q400 � Q401 ¼ Q410 þ Q433; Q400 � Q402 ¼ Q421 þ Q430;ð3bÞ

Q400 � Q403 ¼ Q412 þ Q420:

In view of (3a) and (3b), all thetanulls can be expressed in terms of the four functions
fQ00; Q01; Q02; Q03g, which must therefore be algebraically independent. We shall denote by
K0 :¼ f00; 01; 02; 03g the corresponding set of characteristics.

By d-di¤erention of (3a) and (3b), we obtain each ca; j, a A Kþ, j ¼ 1; 2; 3, as a linear
combination with coe‰cients in QðQaÞa AKþ

of the functions ca; j, a A K0, j ¼ 1; 2; 3. We are
thus reduced to finding six independent relations linking the thirteen functions Q03 and ca; j,
a A K0, j ¼ 1; 2; 3, over QðQ00; Q01; Q02Þ.

Developing the functions ha;b, a3 b A K0, used in (ii) above and expliciting the right-
hand side of Formula (6a), we obtain:

h00;01 :¼ ðc00;1 � c01;1Þðc00;2 � c01;2Þ � ðc00;3 � c01;3Þ
2 ¼ 1
16

Q210Q
2
12Q
2
30Q
2
33

Q200Q
2
01

;ð6cÞ

h00;02 :¼ ðc00;1 � c02;1Þðc00;2 � c02;2Þ � ðc00;3 � c02;3Þ
2 ¼ 1
16

Q220Q
2
21Q
2
30Q
2
33

Q200Q
2
02

;

h01;02 :¼ ðc01;1 � c02;1Þðc01;2 � c02;2Þ � ðc01;3 � c02;3Þ
2 ¼ � 1

16

Q210Q
2
12Q
2
20Q
2
21

Q201Q
2
02

;

h00;03 :¼ ðc00;1 � c03;1Þðc00;2 � c03;2Þ � ðc00;3 � c03;3Þ
2 ¼ 1
16

Q210Q
2
12Q
2
20Q
2
21

Q200Q
2
03

;

h01;03 :¼ ðc01;1 � c03;1Þðc01;2 � c03;2Þ � ðc01;3 � c03;3Þ
2 ¼ � 1

16

Q220Q
2
21Q
2
30Q
2
33

Q201Q
2
03

;

h02;03 :¼ ðc02;1 � c03;1Þðc02;2 � c03;2Þ � ðc02;3 � c03;3Þ
2 ¼ � 1

16

Q210Q
2
12Q
2
30Q
2
33

Q202Q
2
03

:

Notice that in view of relations (3a), the numerators of the right-hand terms of (6c) are
polynomials in Qa, a A K0. For instance, the first one reads

Q210Q
2
12Q
2
30Q
2
33 ¼ ðQ200Q202 � Q201Q

2
03ÞðQ200Q203 � Q201Q

2
02Þ ¼ �Q200Q

2
01Q
4
03 þ � � � :

Now, consider the expressions

w1 ¼ ðc00;3 � c01;3Þ
2; w2 ¼ ðc00;3 � c02;3Þ

2; w3 ¼ ðc02;3 � c01;3Þ
2:

They formally satisfy

w21 þ w22 þ w23 � 2w1w2 � 2w2w3 � 2w3w1 ¼ 0:
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Substituting into this relation the expressions for the w’s given by the first three lines of
(6c) and developing the numerators of the right-hand terms of (6c) as above, we obtain
a polynomial relation R0 between

Q03;c00;1;c00;2;c01;1;c01;2;c02;1;c02;2

with coe‰cients in QðQ00; Q01; Q02Þ. The coe‰cient of Q803 in R0, viewed as a polynomial

in Q03, is the non-zero constant �3 �
1

162
, and we deduce that Q03 is algebraic over the field

QðQa;ca; j; a A K 0; j ¼ 1; 2Þ where K 0 :¼ f00; 01; 02g ¼ K0nf03g:ð7Þ

By (6c), the four functions ca;3, a A K0, are then algebraic over the field generated by
anyone of them, say c00;3, over the field (7).

We conclude the proof of Theorem 3 (iv) by finding (in a similar, though more subtle,
way) two independent relations R1;R2 linking c03;1;c03;2 to the nine generators of the field
(7). Consider the expressions

f0 ¼ ðc03;1 � c01;1Þðc01;1 � c02;1Þh02;03 þ ðc02;1 � c03;1Þðc01;1 � c02;1Þh03;01ð8aÞ

þ ðc02;1 � c03;1Þðc03;1 � c01;1Þh01;02;

f1 ¼ ðc03;1 � c00;1Þðc00;1 � c02;1Þh02;03 þ ðc02;1 � c03;1Þðc00;1 � c02;1Þh03;00

þ ðc02;1 � c03;1Þðc03;1 � c00;1Þh00;02;

f2 ¼ ðc03;1 � c00;1Þðc00;1 � c01;1Þh01;03 þ ðc01;1 � c03;1Þðc00;1 � c01;1Þh03;00

þ ðc01;1 � c03;1Þðc03;1 � c00;1Þh00;01;

f3 ¼ ðc02;1 � c00;1Þðc00;1 � c01;1Þh01;02 þ ðc01;1 � c02;1Þðc00;1 � c01;1Þh02;00

þ ðc01;1 � c02;1Þðc02;1 � c00;1Þh00;01:

When the h’s are developed as in the middle terms of (6c), a computation shows that they
formally satisfy the relation

�
ðf0 þ f1 þ f2 þ f3Þ

2 � 2ðf20 þ f21 þ f22 þ f23Þ
�2 � 64f0f1f2f3 ¼ 0:ð8bÞ

Substituting into (8a) the expressions for the h’s given by the right-hand terms of (6c), we
deduce from (8b) a polynomial relation R1 between

c00;1;c01;1;c02;1;c03;1

with coe‰cients in QðQaÞa AK0
. Now, the coe‰cient of c803;1 in R1, viewed as a polynomial

in c03;1, is �
ðh00;01 þ h00;02 þ h01;02Þ

2 � 2ðh200;01 þ h200;02 þ h201;02Þ
�2
;
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and we can check that this expression is not identically 0 by evaluating it at t ¼ t12
with t A H1, as in the proof of Lemma 4: one finds that it reduces to the non-zero genus 1

modular form h401;02ðt12Þ ¼
1

164
Q3210ðtÞ. We thus deduce from R1 that c03;1 is algebraic

over the field generated by Qa, ca;1, a A K 0, and Q03, hence over the field (7), in view of the
algebraicity of Q03. By the same argument, c03;2 is algebraic over the field generated by Qa,
ca;2, a A K 0, and Q03, hence over the field (7). Therefore, the ten functions

Q00; Q01; Q02;c00;1;c01;1;c02;1;c00;2;c01;2;c02;2;c00;3

are algebraically independent over Q, and the proof of Theorem 3 is completed.

Remark 5. In the same vein, it can be proved in the case g ¼ 3 that the fraction field
of the ring

Q 0
3 ¼ Q½ca; jl �a AKþ; j; l¼1;2;3

is d-stable, and that all thetanulls are algebraic over it. This follows from [Z], Theorems
4 and 6. Theorem 2 of the present paper then implies that Q 0

3 has transcendence degree 21
over Q.
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